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BACKGROUND: Maternal thyroid hormones are essential for fetal brain development in early gestation. Perfluoroalkyl substances (PFASs)—wide-
spread and persistent pollutants—have been suggested to interfere with maternal thyroid hormones in the second or third trimesters, but evidence for
an association in the early pregnancy period is sparse.

OBJECTIVES: Our goal was to evaluate the gestational-week specific associations of maternal thyroid-stimulating hormone (TSH) and free thyroxine
(fT4) levels with plasma concentrations of six PFAS chemicals in the first and second pregnancy trimester.

METHODS: A cross-sectional analysis was conducted using 1,366 maternal blood samples collected between gestational weeks (GWs) 5 and 19 (me-
dian, 8 gestational weeks) in the Danish National Birth Cohort (DNBC) during 1996–2002. We estimated the percentage changes of serum TSH and
fT4 levels according to concentrations (in nanograms per milliliter) of six PFAS chemicals modeled as per interquartile range (IQR) increase or by
exposure quartiles. Moreover, we contrasted the estimated week-specific TSH or fT4 levels by PFAS quartile and estimated ORs for binary high or
low TSH and fT4 status based on the week-specific distribution according to IQR increase of PFAS.

RESULTS: TSH levels followed a U-curve trend in early pregnancy with a nadir at GW10, whereas fT4 levels were less fluctuated in the samples. There
were no apparent associations between any of the PFASs and changes of average TSH or fT4 levels in total samples. In gestational-week–specific analy-
ses, we found that the estimated TSH values were higher among the highest perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoro-
hexane sulfonate (PFHxS), and perfluoroheptane sulfonate (PFHpS) quartiles compared with the lower quartiles from GW5 to GW10, but the difference
became null or even reversed after GW10. For binary outcomes, perfluorodecanoic acid (PFDA) was associated with high fT4 status before GW10
[OR=1:46 (95% CI: 1.04, 2.05)].

CONCLUSIONS: We observed some gestational-week–specific associations between high exposure to several PFAS and TSH level in early gestations.
Further research of the biology and the potential clinical impact regarding thyroid hormones disruptions in early pregnancy is needed. https://doi.org/
10.1289/EHP5482

Introduction
Perfluoroalkyl substances (PFASs) are synthetic chemicals manu-
factured since the 1950s that have been used to water- and stain
proof various industrial and consumer products including clothing,
carpets, food packing material, and kitchenware (Bergman et al.
2013; Lindstrom et al. 2011). PFASs are extremely resistant to bio-
transformation and environmental degradation. The two most
commonly used PFASs, perfluorooctane sulfonate (PFOS) and
perfluorooctanoic acid (PFOA), have estimated biological half-
lives of 3–5 y in humans (Houde et al. 2006; Olsen et al. 2007).
Humans are nearly ubiquitously exposed to PFASs from bioaccu-
mulation in the food chain or contamination of food packaging

material, indoor air and household environments, or drinking water
(Sun et al. 2016). Production of PFOS and PFOAhas been decreas-
ing in the United States and Europe since 2000 (Bergman et al.
2013), but they are stillwidely detectable (Bjerregaard-Olesen et al.
2016; Chu et al. 2016; Kato et al. 2011). At the same time, expo-
sures to other types of PFASs such as perfluorononanoic acid
(PFNA) have found to be increasing (Bjerregaard-Olesen et al.
2016; Kato et al. 2011). Newer types of fluorinated compounds
used as substitutes for PFOA, such as Gen-X [also named
perfluoro-2-propoxypropanoic acid (PFPrOPrA) or hexafluoropro-
pylene oxide–dimer acid (HFPO-DA)], have also been recently
detected in biota (Chu et al. 2016; Gebbink et al. 2017; Sun et al.
2016).

Thyroid hormones (THs) are critical for normal brain devel-
opment of the fetus during pregnancy and in early postnatal life
(Burrow et al. 1994; Greenhill 2017). The fetus begins producing
its own supply of THs around the end of the first trimester, and
the fetal thyroid gland may be functionally mature at approxi-
mately 18 to 20 weeks of gestation (Greenhill 2017; Morreale de
Escobar et al. 2004). Thus, in the first to mid-second trimester,
the fetus depends largely on maternal THs (Burrow et al. 1994).
Recently, evidence has indicated that even subtle changes in
maternal thyroid function during pregnancy may impair neurode-
velopment in the child (Korevaar et al. 2016; Henrichs et al.
2010; Haddow et al. 1999; Andersen et al. 2017). Maternal TH
levels in early gestations change during the course of pregnancy,
posing challenges for the detection of anomalies of thyroid
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function in this early, important period of development (Laurberg
et al. 2016).

Biological studies have demonstrated that PFASs have a rather
strong ability to interfere with thyroid function, possibly by affect-
ing enzymes in the thyroid gland or disturbing hypothalamic–
pituitary–thyroid (HPT) axis responsiveness or binding to transthyr-
etin (Jensen and Leffers 2008; Long et al. 2013; Weiss et al. 2009;
Yu et al. 2009). A previous review showed that higher levels
of PFOS have been associated with higher levels of thyroid-
stimulating hormone (TSH) in the second trimester of pregnancy in
four epidemiological studies, but associations between other types
of PFAS and THs were inconclusive (Ballesteros et al. 2017). The
majority of previous studies were smaller in size and have evaluated
associations between PFASs and THs only in the second and third
trimester (Ballesteros et al. 2017). Only one study evaluated
PFASs and THs in early pregnancy [around gestational week
(GW) 10] among 732 mothers in Boston, Massachusetts, and
found no associations between six types of PFAS and maternal
total thyroxine (T4); however, PFOA, perfluorohexane sulfonate
(PFHxS), and 2-(N-methyl-perfluorooctane sulfonamido) acetate
(MeFOSAA) were inversely associated with the maternal free T4
(fT4) index, calculated from total T4 and level of triiodothyronine
(T3) resin uptake (T3U) to estimate the circulating fT4 levels after
accounting for thyroid-binding protein levels (Preston et al. 2018).

In this study, we evaluated the associations between six types
of PFAS and maternal thyroid function (determined by TSH and
fT4) in early pregnancy among 1,366 pregnant women enrolled
in the Danish National Birth Cohort (DNBC). We also investi-
gated whether the possible PFAS and TSH or fT4 relationships
might vary by gestational week in early pregnancy.

Materials and Methods

Study Participants
TheDNBC is a national pregnancy cohort study established during
1996–2002 with 100,417 pregnant women originally enrolled by
their general practitioners at their first antenatal visit (Olsen et al.
2001). In the present study, we analyzed data from 1,366 pregnan-
cies in the DNBC for which both PFAS and TH levels were meas-
ured in the same maternal plasma samples all collected in the same
time period (i.e., 1996–2002) at study enrollment and during
GW5 to GW19 {median ½interquartile range ðIQRÞ�=8 ð7− 10Þg.
Specifically, prenatal PFASmeasures were generated in three sub-
cohort studies nested within the DNBC (termed Study Samples 1,
2, and 3 according to the chronological order of the time of mea-
sure) (Fei et al. 2007; Liew et al. 2014, 2018b). TH levels were
measured in two samples, with one selected about 12% random
subset of the DNBC to establish TH screening reference limits
in early pregnancy (Laurberg et al. 2016). The second-sample
included mothers and children participated in the nested Lifestyle
During Pregnancy Study (LDPS) cohort designed to evaluate pre-
natal alcohol intake and neuropsychological outcomes in children
at 5 years of age (Andersen et al. 2018b; Kesmodel et al. 2010).

Details of the sampling criteria and flowchart of selection for
the three study samples are presented in Figure 1. Briefly, Study
Sample 1 measured PFOA and PFOS for 1,400 mothers selected at
random from among those who completed all four baseline inter-
views and a 7-y follow-up questionnaire (Fei et al. 2007); among
these women, 188 had TH measures available. Study Sample 2
included 545 children randomly selected at birth (boy-to-girl ratio
of 4:1) as population controls for a case–cohort study (Liew et al.
2015); among these children, 97 had THmeasures available. Study
Sample 3 contained the majority of all samples used in this study
(N =1,081) from mothers and children who participated in the
nested LDPS cohort at 5 years of age (Kesmodel et al. 2010). Study

Sample 3 had a higher proportion of women with alcohol intake
during pregnancy due to the over-sampling strategy. Measures of
16 types of PFASwere available in Study Samples 2 and 3.

All participants provided written informed consent at the time
of inclusion in the DNBC. The research protocol for this study
was approved by the Danish data inspectorate (journal no. 2016-
051-000001, serial no. 1343), and the institutional review boards
at UCLA (16-001849) and Yale University (2000024089).

PFASMeasurements
All blood samples collected in the DNBC were sent by mail to
the Statens Serum Institute in Copenhagen and stored in −20�C
or −80�C freezers. Samples in the Study Samples 2 and 3 were
analyzed at the Department of Environmental Science at Aarhus
University, Denmark (Liew et al. 2014), and samples in Study
Sample 1 were analyzed at the 3M Toxicology Laboratory (San Paul,
Minnesota, USA) (Ehresman et al. 2007). Details about the analytic
methods for PFAS measures have been described elsewhere (Fei
et al. 2007; Liew et al. 2014, 2015). Briefly, 0:1 mL storedmaternal
plasma retrieved from the biobank for each participants were sorted
in random order. Both laboratories employed similar analytic meth-
ods using a solid-phase extraction technique for sample extraction
and purification, and liquid chromatography–tandem mass spec-
trometry to measure PFAS concentrations. Only PFOS and PFOA
were measured in Study Sample 1 because only these two PFAS
compounds could be measured in 2007. Sixteen PFASs were meas-
ured in Study Samples 2 and 3 between 2011 and 2014. For Study
Samples 2 and 3, our analyses focused on six types of PFAS that
were quantifiable in >90% of all measured samples and included
PFOS at 100%; PFOA, 100%; PFHxS, 98%; perfluoroheptane sulfo-
nate (PFHpS), 96%; PFNA, 92%; and perfluorodecanoic acid
(PFDA), 90% (Liew et al. 2014, 2015). Values below the lower limit
of quantitation were replaced by a multiple imputation algorithm
that included all PFASsand somedemographic variables (Liewet al.
2014, 2018b). Details on detection and quantitation limits for each
PFAS can be found in Table S1.

Comparisons of PFAS measurements in the two laboratories
have been performed previously (Liew et al. 2014). We found
that the absolute PFOS and PFOA value read-outs at the 3M
laboratory were slightly higher than at the Aarhus University
laboratory, but the correlations of PFOS and PFOA concentra-
tions measured in the same samples (n=21) by the two labora-
tories were very high (Pearson correlation r=0:94 for PFOS
and r=0:95 for PFOA). Pooled analyses combining PFAS
measures across the study samples generated in the DNBC have
been conducted (Bach et al. 2015; Ernst et al. 2019; Meng et al.
2018).

Thyroid Hormone Measurements
TSH and fT4 were measured in 2015 using the Dimension Vista®
automated immunoassay (Siemens Healthcare Diagnostics) as
described in detail elsewhere (Laurberg et al. 2016). Most of the
women included in the studies did not have thyroid disease (i.e.,
no diagnosis or treatment) nor did they receive treatment for thy-
roid disease at the time of blood sampling (Andersen et al.
2018a). The gestational-week–specific distributions of TSH and
fT4 from GW5 to GW19 in the DNBC have been described pre-
viously; TSH exhibited a U-curved trend with a nadir at GW10,
and fT4 exhibited an inverted U-curved trend with a peak also at
GW10 (Laurberg et al. 2016).

Covariates
Potential confounding factors were selected a priori according to
a directed acyclic graph (see Figure S1). Our models included
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maternal age at delivery (<25, 25–29, 30–34, ≥35 y), parity
(0, 1, >1), socio-occupational status (a four-level variable created
based on the highest maternal or paternal education and occupa-
tion as 1 for a high-grade professional with long-term education;
2 for a medium-grade professional with medium-term education;
3 for a skilled worker or work in position that required a shorter
education; and 4 for unskilled workers, unemployment, or those
on financial assistance), maternal prepregnancy body mass index
(BMI; ≤18:5, 18.5 to <25, 25 to <30, ≥30 kg=m2), gestational
week of blood sampling measure (continuous and square trans-
formed), maternal smoking during pregnancy (yes, no), and
child’s birth year (<2000, ≥2000). Information regarding these
demographic variables were collected from maternal interveiws
conducted during pregnancy. The gestational week of blood sam-
pling was calculated using the date of sampling registered in the
DNBC biobank, and the date of birth and the gestational age at

birth of the child were obtained from the Danish Medical Birth
Registry (Laurberg et al. 2016). In Denmark, gestational age is
recorded based on the date of last menstrual period (on average 2
weeks before conception) in combination with ultrasound verifi-
cation. We calculated the first day from the last menstrual period
by subtracting the registered gestational age (in days) from the
date the child was born, and then estimated the gestational week
of blood sampling from the date of sampling. Gestational week
of blood sampling ranged from GW5 to GW19.

Statistical Analysis
TSH and fT4 levels were first analyzed as continuous values after
a natural-log transformation to address normality assumptions in
linear regression models and improve model fit. We used multi-
variable linear regression models to estimate the relationships

Figure 1. Sample selection for the three substudy samples. Note: DNBC, Danish National Birth Cohort; LDPS, Lifestyle During Pregnancy Study; PFAS, per-
fluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptane sulfonate; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoic acid;
PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonate; TH, thyroid hormone.
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between ln-TSH or ln-fT4 and PFAS exposures. To increase the
interpretability of the results, the coefficient for the exposure
variable in this model was exponentiated and reported as the rela-
tive change (or ratio) of the geometric mean of TSH (in milli-
international units per liter) and fT4 (in picomoles per liter)
according to exposures. Moreover, we also calculated the percent
difference using the formula ½exp ðbetaÞ− 1�× 100% to facilitate
comparisons with a previous study (Preston et al. 2018). PFASs
were analyzed as continuous [per interquartile range (IQR)
increase] or categorical (quartiles with the lowest quartile as ref-
erence) variables. The IQR for each PFAS was calculated using
the total sample distributions (see Table S2). All potential covari-
ates mentioned above were also included in the model.

We conducted stratified analyses using binary categories for
socio-occupational status (Levels 1 and 2 vs. Levels 3 and 4),
parity (nulliparous vs. multiparous), maternal smoking (smoker
vs. nonsmoker), child’s birth year (<2000 vs. ≥2000), geographi-
cal residence (East vs. West Denmark), maternal age at birth
(<30 vs. ≥30), and alcohol intake during pregnancy (drinker vs.
nondrinker) because these factors had previously been suggested
to be associated with maternal TH function in the DNBC
(Andersen et al. 2018a, 2018b; Laurberg et al. 2016) and they
could potentially modify the effect estimates of PFAS exposures
(Ballesteros et al. 2017; Liew et al. 2018a; Rappazzo et al. 2017).
Tests of heterogeneity were also performed by assessing the p-
value of the interaction term for each PFAS and potential modify-
ing factors in the regression models.

Because maternal TSH or fT4 values may follow (inverted)
U-shapes in early pregnancy, we included a linear and a quadratic
term for the continuous gestational week variable in the models.
To account for possible laboratory differences or batch effect, an
indicator variable for study (1, 2, or 3) was entered for all contin-
uous PFAS analyses (Bach et al. 2015; Meng et al. 2018), and a
study sample–specific cutoff was used to generate PFAS quar-
tiles. PFAS levels below the lower limit of quantitation and miss-
ing covariate values were replaced using a multiple imputation
algorithm that included six PFAS and all of the abovementioned
covariates in the model (Lubin et al. 2004).

We also fitted a more flexible model to studywhether the PFAS
and TSH or fT4 relationships might vary by gestational week. We
included interaction terms for the gestational week (continuous
and square transformed) and binary exposure variables (the lowest
three quartiles vs. the highest quartile) into multivariable linear
regression models. We then estimated the expected TSH and fT4
values for each PFAS exposure group in each gestational week
while adjusting for potential confounders using themarginal stand-
ardization form of the predictive margins (Williams 2012).
Considering the dimensionality of this model, all PFAS values
were dichotomized as low or high. First, we compared the three
lower PFAS quartiles to the highest quartile, and second, we com-
pared only the lowest to the highest quartile. We furthermore per-
formed analyses for binary PFAS and continuous TSH and fT4
values according to whether the samples were collected before or
after GW10. GW10 was suggested as the nadir point for the
dynamic changes of TSH and fT4 during early pregnancy, as previ-
ously reported for this cohort (Laurberg et al. 2016).

Moreover, we studied possible TH abnormalities based on the
gestational-week–specific distribution of TSH and fT4 (Laurberg
et al. 2016). Because the number of womenwith clinical or subclin-
ical hyper- or hypothyroidism (Cooper and Biondi 2012) was very
small and we focused on the dynamic changes in THs by gesta-
tional week (Laurberg et al. 2016) rather than thyroid disease sta-
tus, we used 10th and 90th percentile week–specific cutoffs to
classify women as having a relatively high or low TSH or fT4 hor-
mone status; for example, low TSH (<10th), high TSH (>90th),

low fT4 (<10th), or high fT4 (>90th) status. Multinomial logistic
regressionmodels were used to estimate odds ratios (ORs) for each
outcome and continuous PFAS exposures. We used normal [10th–
90th] TH levels as the reference group to which we compared low
(<10th) or high (>90th) TH–level groups. We also performed the
multinomial logistic regression models using only Study Sample 3
or excluding 37 women who self-reported ever receiving a diagno-
sis of thyroid disease, including those currently having the condi-
tions in early gestations.

In sensitivities analyses, we additionally adjusted for geographi-
cal residence (East vs.West Denmark) as a proxy variable for iodine
intake. There are geographical differences in iodine intake levels
due to different iodine contents in Danish groundwater (Laurberg
et al. 2010). Moreover, we also controlled for fish intake (less than
once per month, less than once per week, more than once per week)
and maternal alcohol intake (yes, no) during early pregnancy. To
assess the influence of co-exposure to different PFASs, we con-
trastedmulti-pollutantmodels for continuousTH levels after includ-
ing one PFAS at a time according to their prevalence. Our first
model included only PFOS and PFOA, and we then added—one by
one—PFHxS, PFNA, PFHpS, and PFDA (in this order). Analyses
that co-adjusted for all six PFASs were also performed with gesta-
tional-week–specific TH values and binary PFAS exposures.

Stabilized inverse-probability-weights (IPWs) were used to
account for subject selections into each of the subsamples (Liew
et al. 2018b; Meng et al. 2018). Briefly, the IPWs first accounted
for the disproportionate infant’s sex ratios in Study Sample 2 and
the oversampling of alcohol drinkers in Study Sample 3. The selec-
tion criteria of Study Samples 1 and 3 conditioned on follow-up at
5 years of age in the nested LDPS cohort (among those invited,
∼ 50% participated), or at 7 years of age among mothers who
returned an online questionnaire (among those invited, ∼ 60% par-
ticipated), which could induce selection bias. Therefore, the IPWs
also incorporated the modeled probabilities of follow-up using a
range of baseline factors that were available for all eligible women.
Some of the main predictors for participation included maternal
age, parental social class, prepregnancy BMI, maternal smoking
and alcohol intake during pregnancy, organic food intake during
pregnancy, child’s birth year, and child’s birth outcome such as
preterm birth and low birth weight (Liew et al. 2018b; Meng et al.
2018). Robust variance estimators were used to compute 95% con-
fidence intervals (CIs) in all weighted regression analyses. All sta-
tistical analyses were conducted using SAS (version 9.4; SAS
Institute Inc.) and STATA (version 15; StataCorp LLC).

Results
Table 1 presents the baseline demographic characteristics of the
study participants (unweighted) by the study sample. The PFOS
and PFOA values in Study Sample 1 were slightly higher because
of laboratory difference, whereas PFAS levels in Study Samples
2 and 3 were rather comparable. A Pearson correlation matrix for
the six PFASs is presented in Table S3. The gestational-week–
specific distribution of maternal TSH and fT4 in all samples is
presented in Table S4.

PFAS Exposure and Average Changes of Thyroid Hormone
Levels in Early Pregnancy
There were no apparent associations between higher PFASs in a
linear model or exposure quartiles and changes in average TSH
or fT4 levels in all samples (Table 2). These findings did not
change when additionally adjusting for fish intake in pregnancy,
geographical residence, and alcohol intake (see Table S5) or in
models that mutually adjusted for different types of PFAS (see
Table S6). There was also no evidence for effect measure
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modifications with any of the PFASs by strata of socio-
occupational status, parity, maternal smoking, child’s birth year,
geographical residence, maternal age at birth, or alcohol intake
during pregnancy (see Table S7).

Potential Modifying Effects of PFAS on Thyroid Hormones
by Gestational Week
In models that allowed gestational-week–specific comparisons of
the expected TSH or fT4 values by PFAS exposure, we found that
the estimated TSH levels were higher in the top exposure quartile
compared with the lower three quartiles for all PFASs from GW5
through GW9 or 10, but this trend became null and reversed after
GW10; that is, after GW10, the highest quartile of exposure
appeared to be associated with a lower estimated TSH level except
for PFOS (Figure 2; see also Table S8). Less apparent differences
in trend were found for fT4. There was also a possible reversing of
trends for the top quartiles of PFOS, PFHpS, and PFDA that had
lower expected fT4 levels prior to GW8 but higher thereafter.
These reversing trends (i.e., higher estimated TSH prior to GW10
but lower after) were found for PFOA, PFNA, and PFHpS when

we compared the highest to the lowest quartiles (see Figure S2).
Trends did not change after simultaneously adjusting for all six
PFASs (see Figure S3). In analyses stratified by gestational week
(<10, ≥10) at which samples were collected (see Table S9), the
highest PFDA quartile was associated with higher TSH levels
before GW10 but with lower TSH levels at or after GW10
(pinteraction = 0:003). Similar directions were observed for other
PFAS and TSH levels, but the 95% CIs of the gestational-week–
stratified estimates overlapped and included the null.

PFAS Exposures on Thyroid Status (Based on Gestational-
Week–specific Cutoffs)
There were no apparent associations between PFAS exposures and
week-specific high or low TSH or fT4 status in the analysis re-
stricted to samples taken before GW10 except for PFDA, which
appeared to be correlatedwith high fT4 levels in the early pregnancy
weeks [OR=1:37 (95% CI: 1.04, 1.80)] (Table 3). Results were
similarly null in the analysis that included all gestational weeks
(GW5 to GW19) but only using Study Sample 3 and in the analysis
excludingwomenwith thyroid diseases (see Tables S10 and S11).

Table 1. Study characteristics of the three study samples (unweighted) from the Danish National Birth Cohort.

Characteristics

Total Sample 1 Sample 2 Sample 3

(N =1,366) (n=188) (n=97) (n=1,081)

Thyroid hormones [GM (95% CI)]
TSH (mIU/L) 1.13 (1.08, 1.19) 1.20 (1.06, 1.37) 1.01 (0.86, 1.18) 1.13 (1.08, 1.19)
fT4 (pmol/L) 14.2 (14.1, 14.3) 14.6 (14.3, 14.9) 14.9 (14.6, 15.2) 14.1 (14.0, 14.2)
PFAS {ng/mL [median (IQR)]}
PFOS 29.5 (22.6–37.7) 34.2 (27.5–43.5) 29.6 (19.3–37.0) 28.6 (22.2–36.5)
PFOA 4.52 (3.38–5.80) 5.41 (3.39–7.10) 4.14 (2.88–5.84) 4.43 (3.34–5.62)
PFHxS 1.11 (0.83–1.39) NAa 0.94 (0.58–1.23) 1.13 (0.84–1.41)
PFNA 0.45 (0.36–0.57) NAa 0.42 (0.34–0.52) 0.46 (0.36–0.57)
PFHpS 0.37 (0.27–0.49) NAa 0.30 (0.21–0.43) 0.38 (0.28–0.50)
PFDA 0.17 (0.13–0.22) NAa 0.16 (0.11–0.24) 0.17 (0.14–0.22)
Mother’s age {y [n (%)]}
19–29 607 (44.4) 82 (43.6) 51 (52.6) 474 (43.9)
30–34 534 (39.1) 74 (39.4) 34 (35.0) 426 (39.4)
35–45 225 (16.5) 32 (17.0) 12 (12.4) 181 (16.7)
Gestational week at time of blood collection [mean (min, max)] 8.3 (5, 19) 8.0 (5, 13) 7.8 (5, 14) 8.4 (5, 19)
Parity [n (%)]
0 716 (52.4) 85 (45.2) 49 (50.5) 582 (53.8)
1 410 (30.0) 68 (36.2) 34 (35.1) 308 (28.5)
>1 240 (17.6) 35 (18.6) 14 (14.4) 191 (17.7)

Parental socio-occupational status [n (%)]
1 (the highest) 491 (35.9) 61 (32.5) 28 (28.9) 402 (37.2)
2 450 (32.9) 59 (43.6) 28 (28.9) 363 (33.6)
3 388 (28.4) 62 (33.0) 36 (37.1) 290 (26.8)
4 (the lowest) 37 (2.7) 6 (3.2) 5 (5.2) 26 (2.4)
Maternal smoking during early pregnancy [n (%)] 432 (31.6) 52 (27.7) 26 (26.8) 354 (32.8)
Mother’s prepregnancyBMI {kg=m2 [n (%)]}
≤18:5 79 (5.8) 8 (4.3) 8 (8.3) 63 (5.8)
18:5–<25 923 (67.6) 113 (60.1) 59 (60.8) 751 (69.5)
25–<30 262 (19.2) 47 (25.0) 21 (21.7) 194 (18.0)
≥30 102 (7.5) 20 (10.6) 9 (9.3) 73 (6.8)

Birth year {y [n (%)]}
<2000 402 (29.4) 56 (29.6) 35 (35.7) 311 (28.8)
≥2000 966 (70.6) 133 (70.4) 63 (64.3) 770 (71.2)

Fish intake
No 52 (3.8) 6 (3.2) 5 (5.1) 41 (3.8)
Low 220 (16.1) 34 (18.0) 18 (18.4) 168 (15.5)
Medium 673 (49.2) 95 (50.3) 45 (45.9) 533 (49.3)
High 423 (30.9) 54 (28.6) 30 (30.6) 339 (31.4)
Geographical residence [n (%)]
East 484 (35.4) 53 (28.2) 43 (44.3) 388 (35.9)
West 882 (64.6) 135 (71.8) 54 (55.7) 693 (64.1)

Note: BMI, body mass index; CI, confidence interval; fT4, free thyroxine; GM, geometric mean; IQR, interquartile range; max, maximum; min, minimum; NA, not available; PFAS,
perfluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptane sulfonate; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoic acid; PFOA, perfluorooc-
tanoic acid; PFOS, perfluorooctane sulfonate; Ref, reference; TSH, thyroid-stimulating hormone.
aPFHxS, PFNA, PFHpS, and PFDA were not measured in Sample 1.
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Discussion
In this study, we found no strong association between six types
of prenatal PFASs and average changes of TSH or fT4 values in
prenatal maternal samples collected from GW5 to GW19 in the
DNBC. However, gestational-week–specific analyses suggested a
possible crossover trend with top exposure quartiles for several
PFASs being associated with higher TSH values up to GW10 and
lower values thereafter, and the opposite pattern was observed
for fT4 and the highest quartiles of three types of PFAS. These
results suggest that PFASs may affect the natural U- or inverted
U-shape trends for TSH or fT4 levels in the first trimester of
pregnancy with a turning point at GW9 or GW10 (Greenhill
2017; Laurberg et al. 2016). Nevertheless, these gestational-
week–specific comparisons in our data were not precise enough
to allow us to draw strong conclusions and reevaluation is needed
in larger samples. The associations found between PFDA and
high fT4 status in early pregnancy could reflect chance findings,
but they warrant further investigation.

Even a small disruption in maternal THs may have considerable
implications for fetal neurodevelopment (Lazarus et al. 2012), but
little is currently known about the possible influence that PFASs
may have on these maternal hormones in early gestation. Several
pregnancy cohort studies have investigated associations between
PFASs and THs in the second or third pregnancy trimesters, but

most had relatively small sample sizes with fewer than 400 subjects
(Ballesteros et al. 2017; Jensen and Leffers 2008;Wang et al. 2014).
Different types of PFASs have been suggested to be either positively
or negatively correlated with THs in these studies, with the most
consistent finding being a positive association between PFOS and
TSH status in the second trimester (Ballesteros et al. 2017). One
recent study from Boston that analyzed 732 early pregnancy sam-
ples collected aroundGW10 reported that PFOA, PFOS, and PFNA
were inversely associated with TSH levels but only among the sub-
set of women with positive thyroid peroxidase antibody and that
PFOA, PFHxS, and MeFOSAA were inversely associated with a
maternal fT4 index calculated from total T4 and T3 uptake (Preston
et al. 2018). Our study examined fT4 levels measured via immuno-
assay instead of using an fT4 index. Although fT4 immunoassay
methods could be sensitive to alterations in thyroxine-binding pro-
tein in pregnancy (Alexander et al. 2017; Lee et al. 2009), previous
studies in the DNBC found that fT4measures, as well as TSHmeas-
ures during early pregnancy, were predictive of adverse neurodeve-
lopmental disorders and impaired psychological function in the
offspring (Andersen et al. 2018a, b). In addition, our large sample
size enabled us to evaluate whether each of the PFAS and TSH or
fT4 associations varied by gestational week.

Our findings indicate that PFASs possibly disrupt the normal
dynamic TH response in early pregnancy, but whether these

Table 2. Associations between maternal thyroid hormone levels and plasma PFAS levels (ng/mL) in all samples.

PFAS

TSH (mIU/L) fT4 (pmol/L)

Relative percentage
difference (95% CI)

Absolute percentage
difference (95% CI)

Relative percentage
difference (95% CI)

Absolute percentage
difference (95% CI)

PFOS
Per IQR increase 1.04 (0.96, 1.14) 4.3 (−4:3, 13.8) 1.00 (0.99, 1.02) 0.4 (−1:0, 1.8)
Quartile 1 Ref Ref Ref Ref
Quartile 2 0.86 (0.69, 1.06) −14:4 (−30:6, 5.7) 1.03 (0.99, 1.06) 2.5 (−0:6, 5.8)
Quartile 3 0.96 (0.78, 1.17) −4:1 (−21:7, 17.4) 1.02 (0.99, 1.05) 2.1 (−0:8, 5.0)
Quartile 4 1.01 (0.83, 1.22) 0.8 (−16:8, 22.0) 1.01 (0.98, 1.04) 0.8 (−2:3, 3.9)

PFOA
Per IQR increase 1.01 (0.93, 1.1) 1.5 (−6:7, 10.3) 1.01 (0.99, 1.02) 0.6 (−0:6, 1.9)
Quartile 1 Ref Ref Ref Ref
Quartile 2 0.96 (0.78, 1.19) −3:9 (−22:3, 18.8) 0.99 (0.97, 1.02) −0:5 (−3:4, 2.4)
Quartile 3 1.02 (0.83, 1.25) 1.6 (−17:2, 24.7) 1.01 (0.98, 1.04) 1.2 (−1:9, 4.4)
Quartile 4 1.08 (0.86, 1.36) 8.2 (−13:9, 35.9) 1.01 (0.98, 1.04) 0.7 (−2:4, 3.9)

PFHxS
Per IQR increase 1.02 (0.96, 1.08) 1.7 (−4:4, 8.1) 1.00 (0.98, 1.01) −0:3 (−1:6, 1.0)
Quartile 1 Ref Ref Ref Ref
Quartile 2 0.98 (0.79, 1.21) −2:1 (−20:7, 20.8) 0.99 (0.96, 1.02) −1:0 (−4:1, 2.3)
Quartile 3 0.92 (0.68, 1.24) −8:2 (−32:1, 24.2) 1.01 (0.97, 1.05) 1.3 (−2:7, 5.4)
Quartile 4 1.03 (0.84, 1.27) 3.0 (−16:4, 27.0) 1.02 (0.99, 1.06) 2.5 (−1:0, 6.1)

PFNA
Per IQR increase 1.01 (0.95, 1.08) 1.3 (−4:8, 7.7) 1.00 (0.99, 1.01) −0:1 (−1:2, 0.9)
Quartile 1 Ref Ref Ref Ref
Quartile 2 0.97 (0.75, 1.26) −3:1 (−25:4, 25.9) 1.00 (0.96, 1.04) −0:2 (−3:9, 3.7)
Quartile 3 1.01 (0.81, 1.27) 1.4 (−19:1, 27.1) 1.01 (0.97, 1.04) 0.6 (−2:9, 4.3)
Quartile 4 1.03 (0.82, 1.29) 3.1 (−17:7, 29.0) 1.00 (0.96, 1.03) −0:4 (−3:7, 3.1)

PFHpS
Per IQR increase 1.03 (0.94, 1.13) 3.4 (−5:7, 13.4) 1.00 (0.99, 1.02) 0.1 (−1:3, 1.6)
Quartile 1 Ref Ref Ref Ref
Quartile 2 0.95 (0.75, 1.22) −4:6 (−25:4, 22.1) 0.99 (0.96, 1.03) −0:5 (−3:8, 2.9)
Quartile 3 1.01 (0.82, 1.23) 0.6 (−18, 23.5) 1.02 (0.99, 1.05) 1.8 (−1:4, 5.1)
Quartile 4 1.07 (0.86, 1.33) 7.1 (−13:8, 33.0) 1.00 (0.97, 1.03) −0:2 (−3:4, 3.1)

PFDA
Per IQR increase 0.99 (0.93, 1.05) −1:3 (−7:2, 4.9) 1.01 (1.00, 1.02) 0.8 (−0:4, 1.9)
Quartile 1 Ref Ref Ref Ref
Quartile 2 0.97 (0.79, 1.21) −2:7 (−21:4, 20.6) 1.01 (0.98, 1.04) 1.0 (−2:3, 4.3)
Quartile 3 1.00 (0.78, 1.29) 0.4 (−21:5, 28.5) 1.02 (0.98, 1.05) 1.5 (−2:3, 5.4)
Quartile 4 1.04 (0.83, 1.29) 3.6 (−16:7, 28.8) 1.00 (0.96, 1.03) −0:5 (−3:6, 2.7)

Note: The model was adjusted for maternal age, parental socio-occupational status, prepregnancy BMI, parity, maternal smoking, and birth year. Study sample indicators (1, 2, 3) were
included in the model for continuous exposure and study-specific distributions were used to define PFAS quartiles. Relative percentage difference was calculated as exp(beta).
Absolute percentage difference was calculated as ½expðbetaÞ− 1�×100%. BMI, body mass index; CI, confidence interval; fT4, free thyroxine; IQR, interquartile range; PFAS, perfluor-
oalkyl substance; PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptane sulfonate; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic
acid; PFOS, perfluorooctane sulfonate; Ref, reference; TSH, thyroid-stimulating hormone.
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minor changes have any developmental implications for the fetus
is unknown. Toxicological studies have indicated that PFASs,
mainly PFOS and PFOA, have thyroid-disrupting effects that
result in hypothyroid function, possibly by regulating hepatic

glucuronidation enzymes and deiodinases in the thyroid gland
(Yu et al. 2009) or reducing HPT axis responsiveness (Long et al.
2013) or binding to transthyretin (Ren et al. 2015; Weiss et al.
2009). Moreover, PFHxS was reported to induce the expression

Figure 2. Adjusted (A)TSHand (B) fT4 levels in each gestationalweek according to binary PFASexposure.We estimated the expectedTSHand fT4 value for each gesta-
tional week, comparing the top PFAS quartile to the lower three quartiles while adjusting for maternal age, socio-occupational status, BMI, parity, smoking, and birth year.
Study-specific distribution was used to define PFAS quartiles. The model also included interaction terms between PFAS (binary) and gestational week (continuous value
and a square term).Whiskers and bars represent 95%CIs in each gestationweek. Detailed numeric data for thefigure is presented in Table S8.Note: BMI, bodymass index;
CI, confidence interval; fT4, free thyroxine; PFAS, perfluoroalkyl substance; PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptane sulfonate; PFHxS, perfluorohexane
sulfonate; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonate; TSH, thyroid-stimulating hormone.
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of type 3 deiodinase (Vongphachan et al. 2011), which is the physi-
ological inactivator of THs (Huang 2005). The dynamic changes in
thyroid homeostasis in early pregnancy are mainly due to the surge
in human chorionic gonadotropin (hCG) produced by the placenta
(i.e., the alpha subunit of the hCG protein, nearly identical to the
alpha subunit of TSH), thus TH activities may be altered if PFASs
disrupt optimal placenta development and subsequently influence
hCG levels (Kim et al. 2011; Yoshimura andHershman 1995). The

null findings from our main analysis need to be further elaborated.
A possible explanation is that such an analysis does not consider
gestational-week–specific variations; for example, if PFASs affect
TH levels differently in early versus mid-gestation, this would be
expected to result in an overall null association when measures are
averaged across all weeks.

Our study has several limitations. First, our analyses did not
account for other hemodynamic factors such as albumin and the

Figure 2. (Continued.)
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estimated glomerular filtration rate (eGFR) that could have influ-
enced our results. Albumin is a minor thyroid-binding protein that
also binds to PFASs (Loccisano et al. 2013; Zoeller 2010), and the
eGFR might affect the renal clearance of PFASs and of iodine—
needed for TH production—in pregnancy (Loccisano et al. 2013;
Sagiv et al. 2015; Zoeller 2010). Nevertheless, the Boston study
showed no evidence for confounding of associations between
PFASs and THs in early pregnancy when adjusting for albumin or
eGFR in their analyses (Preston et al. 2018). Second, thyroid peroxi-
dase antibody status was not measured in the DNBC; thus, we were
not able to evaluate possible thyroid-altering effects of PFASs
through autoimmune damage (Preston et al. 2018; Webster et al.
2014). We did not have sufficient numbers to evaluate associations
in women with overt or subclinical thyroid dysfunction, and few
women in these samples reported thyroid diseases and treatment
during early gestations (Andersen et al. 2018a, 2018b). Therefore,
the findings of this study are not generalizable to women with thy-
roid diseases. In addition, we did not have information on iodine
intake in the women, and iodine is an essential micronutrient neces-
sary for the synthesis of THs and preventing long-term adverse
health outcomes (Inoue et al. 2018; Zimmermann and Boelaert
2015). Main sources of iodine in Denmark are milk, dairy products,
iodized salt (used in the commercial production of bread), seafood,
and other iodine-containing supplements (Rasmussen et al. 2002).
In Denmark, the policy of compulsory iodine supplementation was
established on a national level in 2000 (Blomberg et al. 2012).
Denmark was previously iodine deficient, with regional differences
(Andersen et al. 2015). Thus, we used residency as a proxy for io-
dine levels in our study population, but the results of the stratified
analyses were similar. Future studies should address the potential
modifying effect of iodine in the association between PFASs and
THs in early pregnancy.We cannot rule out influences from residual
uncontrolled confounding, especially dietary habits and lifestyles.
Although our analyses were cross sectional, the six evaluated
PFASs have long biological half-lives, and thus our measures likely
represent cumulative exposures from before pregnancy until the
blood sampleswere taken.Our findings fromgestational-week–spe-
cific analyses lack statistical precision, especially in early and later
weeks when we had fewer samples available. Most of the women
who enrolled in the DNBC were healthy and did not have thyroid
disorders, and our study did not have sufficient numbers to evaluate
associations in women with clinical or subclinical thyroid dysfunc-
tion. Finally, TH levels in each gestational weekwere from different
women, and further investigation with repeated samples for each
woman iswarranted.

In conclusion, we did not find strong evidence to suggest that
the evaluated PFASs were associated with overall TSH and fT4
values in the DNBC. Our gestational-week–specific analyses,
however, suggested that at the highest PFAS levels, TH levels
may be impacted in early pregnancy.
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